Análisis correlacional del razonamiento lógico abstracto y deductivo con el rendimiento académico en general y en el área matemática

Palabras clave: razonamiento lógico, resolución de problemas, aprovechamiento escolar, rendimiento en matemática

Resumen

En la enseñanza de las matemáticas influyen diferentes variables y se espera que después de completar los ciclos de formación en matemáticas los alumnos tengan diferentes habilidades útiles para la vida diaria. Si com- prendemos tanto lo que influye en la enseñanza como lo que se consigue verdaderamente con ella podremos mejorar las clases de matemáticas. Basado en otros instrumentos, se diseñó uno que intenta medir el razonamiento lógico con base en la habilidad deductiva y la capacidad de abstracción. El estudio se realizó con una muestra correspondiente a licenciaturas con enfoque en la enseñanza, en una escuela privada del norte de México, con una edad promedio de 21 años. Se encontró que el razonamiento lógico no tiene correlación con el rendimiento académico general (ρ = .262, p = .061) pero sí con el rendimiento académico matemático (ρ = .303, p = .041). Esta última correlación lineal resultó positiva y nos indica que al aumentar el razonamiento lógico aumenta el rendimiento académico en matemáticas y, al disminuir una de ellas, la otra también.

Descargas

La descarga de datos todavía no está disponible.

Citas

Abdullah, A. H., Rahman, S. N. S. A. y Hamzah, M. H. (2017). Metacognitive skills of Malaysian students in non-routine mathematical problem solving. Bolema: Boletim de Educação Matemática, 31(57), 310–322. https://doi.org/10.1590/1980-4415v31n57a15 DOI: https://doi.org/10.1590/1980-4415v31n57a15

Allwein, G. y Barwise, J. (Eds.). (1996). Logical reasoning with diagrams. Oxford University Press. Amón, J. (1984). Estadística para psicólogos. Pirámide. DOI: https://doi.org/10.1093/oso/9780195104271.001.0001

Bausela Herreras, E. (2018). Pisa 2012: Ansiedad y bajo rendimiento en competencia matemática. Revista Iberoamericana de Diagnóstico y Evaluación - e Avaliação Psicológica, 46(1), 161–173. https://doi.org/10.21865/RIDEP46.1.12 DOI: https://doi.org/10.21865/RIDEP46.1.12

Bilker, W. B., Hansen, J. A., Brensinger, C. M., Richard, J., Gur, R. E. y Gur, R. C. (2012). Development of abreviated nine-item forms of the Raven’s Standard Progressive Matrices Test. Assessment, 19(3), 354–369. https://doi.org/10.1177/1073191112446655 DOI: https://doi.org/10.1177/1073191112446655

Bochenski, J. M. (1996). Historia de la lógica formal. Gredos.

Bronkhorst, H., Roorda, G., Suhre, C. y Goedhart, M. (2020). Logical reasoning in formal and everyday reasoning tasks. International Journal of Science and Mathematics Education, 18(8), 1673–1694. https://doi.org/10.1007/s10763-019-10039-8 DOI: https://doi.org/10.1007/s10763-019-10039-8

Carvalho, I. P., Costa, A., Silva, S., Moreira, B., Almeida, A., Moreira-Rosário, A., Guerra, A., Peixoto, B., Delerve-Matos, C., Sintra, D., Pestama, D., Pinto, E., de Castro Mendes, F., Martins, I., Costa Leite, J., Caldas, J. C., Fontoura, M., Maia, M.L., Queirús, P., . . . Calhau, C. (2020). Children’s performance on Raven’s Coloured Progressive Matrices in Portugal: The Flynn effect. Intelligence, 82, 101485. https://doi.org/10.1016/j.intell.2020.101485 DOI: https://doi.org/10.1016/j.intell.2020.101485

Çelik, M. (2017). Examination of children decision making using clues during the logical reasoning process. Educational Research and Reviews, 12(16), 783–788. https://doi.org/10.5897/ERR2017.3297 DOI: https://doi.org/10.5897/ERR2017.3297

CENEVAL. (2021). Examen Nacional de Ingreso a la Educación Superior (EXANI II). https://ceneval.edu.mx/examenes-ingreso-exani_ii/

CENEVAL. (2023). Guía para el sustentante (EXANI II). https://online.flippingbook.com/view/278435445/ Cid-Sillero, S., Pascual-Sagastizabal, E. y Martinez-de Morentin, J.-I. (2020). Influencia de la autoestima

y la atención en el rendimiento académico del alumnado de la ESO y FPB. Revista de Psicodidáctica, 25(1), 59–67. https://doi.org/10.1016/j.psicod.2019.06.001 DOI: https://doi.org/10.1016/j.psicod.2019.06.001

Clark, C. M., Lawlor-Savage, L. y Goghari, V. M. (2016). The Flynn effect: A quantitative commentary on modernity and human intelligence. Measurement: Interdisciplinary Research and Perspectives, 14(2), 3-53. https://doi.org/10.1080/15366367.2016.1156910 DOI: https://doi.org/10.1080/15366367.2016.1156910

Cresswell, C. y Speelman, C. P. (2020). Does mathematics training lead to better logical thinking and reasoning? A cross-sectional assessment from students to professors. PLoS ONE, 15(7), 1–21. https://doi.org/10.1371/journal.pone.0236153 DOI: https://doi.org/10.1371/journal.pone.0236153

Ebel, R. y Frisbie, D. (1991). Essentials of educational measurement. Prentice Hall.

Escamilla Pérez, M. A. y Heredia Escorza, Y. (2021). Autodirección, habilidades de pensamiento y rendimiento académico en estudiantes normalistas. Diálogos Sobre Educación, 19(10). https://doi.org/10.32870/dse.v0i19.492 DOI: https://doi.org/10.32870/dse.v0i19.492

Fortescue, M. (2017). The abstraction engine: Extracting patterns in language, mind and brain. John Benjamins. https://doi.org/10.1075/aicr.94 DOI: https://doi.org/10.1075/aicr.94

Halpern, D. F. (2013). Thought and knowledge (5ª ed.). Psychology Press. DOI: https://doi.org/10.4324/9781315885278

Hernández Sampieri, R., Fernández Collado, C. y Baptista Lucio, P. (2014). Metodología de la investigación (6ª ed.). McGraw-Hill.

ITESM. (s.f.). Desarrollo de la PAEP. https://ciatej.mx/transparencia/PAEP.pdf Kahneman, D. (2014). Pensar rápido, pensar despacio (2ª ed.). Debolsillo México.

Lewis, K. E. y Fisher, M. B. (2016). Taking stock of 40 years of research on mathematical learning disability: Methodological issues and future directions. Journal for Research in Mathematics Education, 47(4), 338–371. https://doi.org/10.5951/jresematheduc.47.4.0338 DOI: https://doi.org/10.5951/jresematheduc.47.4.0338

Liu, H., Ludu, M. y Holton, D. (2015). Can K-12 math teachers train students to make valid logical reasoning? En X. Ge, D. Infenthaler y M. Spector (Eds.), Emerging technologies for steam education (pp. 331–353). Springer. https://doi.org/10.1007/978-3-319-02573-5_18 DOI: https://doi.org/10.1007/978-3-319-02573-5_18

Mayorga Fernández, M. J., Gallardo Gil, M. y Jimeno Pérez, M. (2015). Evaluación diagnóstica en Andalucía: una investigación del área «competencia matemática». Aula Abierta, 43(1), 47–53. https://doi.org/10.1016/j.aula.2014.07.001 DOI: https://doi.org/10.1016/j.aula.2014.07.001

Mercader, J., Presentación, M.-J., Siegenthaler, R., Molinero, V. y Miranda, A. (2017). Motivación y rendimiento académico en matemáticas: un estudio longitudinal en las primeras etapas educativas. Revista de Psicodidáctica, 22(2), 157–163. https://doi.org/10.1016/j.psicod.2017.05.007 DOI: https://doi.org/10.1016/j.psicod.2017.05.007

Murillo, F. J. y Hernández-Castilla, R. (2020). ¿La implicación de las familias influye en el rendimiento? Un estudio en educación primaria en América Latina. Revista de Psicodidáctica, 25(1), 13–22. https://doi.org/10.1016/j.psicod.2019.10.002 DOI: https://doi.org/10.1016/j.psicod.2019.10.002

Muñiz, J. (2018). Introducción a la Psicometría. Pirámide.

Prayekti, N., Nusantara, T., Sudirmans y Susanto, H. (2020). Eighth-grade student’s mental models in solving a number pattern problem. Journal for the Education for Gifted Young Scientists, 8(2), 973– 989. https://doi.org/10.17478/jegys.708044 DOI: https://doi.org/10.17478/jegys.708044

Raven, J. y Raven, J. (2003). Raven Progressive Matrices. En R. S. McCallum (Ed.), Handbook of nonverbal assessment (pp. 223–237). Springer. https://doi.org/10.1007/ 978-1-4615-0153-4_11 DOI: https://doi.org/10.1007/978-1-4615-0153-4_11

Ren, X., Tong. Y., Peng, P. y Wang, T. (2020). Critical thinking predicts academic performance beyond general cognitive ability: Evidence from adults and children. Intelligence, 82, 101487. https://doi.org/https://doi.org/10.1016/j.intell.2020.101487 DOI: https://doi.org/10.1016/j.intell.2020.101487

Rodríguez-Muñiz, L. J. y Díaz, P. (2015). Estrategias de las universidades españolas para mejorar el rendimiento en matemáticas del alumnado de nuevo ingreso. Aula Abierta, 43(2), 69–76. https://doi.org/10.1016/j.aula.2015.01.002 DOI: https://doi.org/10.1016/j.aula.2015.01.002

Rojas-Bolivar, D., Bardalez-Garcia, B., Bravo-Vasquez, M. L., Arroyo-Ramirez, F. A. y Yon-Leau, C. (2021). Percepción del ambiente educacional y rendimiento académico en una escuela de medicina de Lima: un estudio longitudinal. Educación Médica, 22, 409–413. https://doi.org/10.1016/j.edumed.2020.11.009 DOI: https://doi.org/10.1016/j.edumed.2020.11.009

Samkoff, A., Lai, Y. y Weber, K. (2012). On the different ways that mathematicians use diagrams in proof construction. Research in Mathematics Education, 14(1), 49–67. https://doi.org/10.1080/14794802.2012.657438 DOI: https://doi.org/10.1080/14794802.2012.657438

Schechter, J. (2013). Deductive reasoning. En H. Pashler (Ed.), The encyclopedia of the mind (pp. 226– 230). SAGE.

Sezen, N. y Bülbül, A. (2011). A scale on logical thinking abilities. Procedia Social and Behavioral Sciences, 15, 2476–2480. https://doi.org/10.1016/j.sbspro.2011.04.131 DOI: https://doi.org/10.1016/j.sbspro.2011.04.131

Simões, S., Oliveira, T. y Nunes, C. (2022). Influence of computers in students’ academic achievement. Heliyon, 8(3), e09004. https://doi.org/10.1016/j.heliyon. 2022.e09004 DOI: https://doi.org/10.1016/j.heliyon.2022.e09004

Tánori Quintana, J., Álvarez Quintero, A., Vera Noriega, J. Á. y Durazo Salas, F. F. (2021). Capital cultural y rendimiento académico de estudiantes normalistas en Sonora, México. Educación y Educadores, 24(1), 53–70. https://doi.org/10.5294/educ.2021.24.1.3 DOI: https://doi.org/10.5294/educ.2021.24.1.3

Teig, N. y Scherer, R. (2016). Bringing formal and informal reasoning together—a new era of assessment? Frontiers in Psychology, 7. https://doi.org/10.3389/fpsyg.2016.01097 DOI: https://doi.org/10.3389/fpsyg.2016.01097

Toomela, A., Barros Filho, D., Bastos, A. C. S., Chaves, A. M., Ristum, M., Chaves, S. y Salomão, S. J. (2020). Studies in the mentality of literates: 2. Conceptual structure, cognitive inhibition and verbal regulation of behavior. Integrative Psychological & Behavioral Science, 54(4), 880–902. https://doi.org/10.1007/s12124-020-09517-4 DOI: https://doi.org/10.1007/s12124-020-09517-4

Publicado
2023-06-05
Cómo citar
Vázquez Espinosa, E., & Cahuich Cahuich, T. F. (2023). Análisis correlacional del razonamiento lógico abstracto y deductivo con el rendimiento académico en general y en el área matemática. RIEE | Revista Internacional De Estudios En Educación, 23(2), 87-101. https://doi.org/10.37354/riee.2023.232